1.08 Rev.: Date: 14.04.2016 Page: 1 von 24

Document No.:

Reference:

DOC151228001

IEP-1000288

User Manual iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM (also for iSULONA, iCOMBANA, iPRENA, iATTHEMO-B/C)

Company Confidential □ Commercial-in-Confidence ☑

iMAR Navigation GmbH Im Reihersbruch 3 D-66386 St. Ingbert Germany

www.imar-navigation.de

sales@imar-navigation.de

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 2 von 24

Document No.: Reference: User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM

DOC151228001 IEP-I000288

DOC	DOCUMENT CHANGE RECORD		I = Issued; C = Checked AI = Approved (iMAR) AC = Approved (Customer)			
Rev.	Paragraph	Comments		Date	Name	Function
1.00	All	Document created	I	10.04.15	EvH	CEO
1.01	All	Commands added, CDU software added	I	31.07.15	EvH ChRe	CEO DE
1.02		Ground Support Equipment added	I	06.08.15	EvH	CEO
1.03	1	Application Note reference added / doc approved after internal check	AI	11.09.15	EvH	CEO
1.04	9.4	LED indicator description added	I	08.10.15	TiSc	DE
1.05	18	iXCOM-CMD added	I/C/AI	12.12.15	EvH	CEO
1.06	3	System specific settings extracted to separate document; fusion for all iNAT systems	I	28.12.15	EvH	CEO
1.07	19	FTP switch information for data download added	I	15.02.16	EvH TiSc	CEO/DE
1.08	6	Lever arm definition more detailed by drawings and pictures	I	14.04.16	EvH	CEO

DOCUMENT CHECK & APPROVAL REQUIREMENTS

CHECK required	APPROVAL by iMAR required	APPROVAL by Customer required
No	No	No
	Name, Date, Signature:	Name, Date, Signature:

Acronyms of Functions

Industrial/MIL Projects / Industrie- & MIL-Projekte		Aviation & Space Projects / Luft- und Raumfahrtprojekte		
CEO	Chief Executive Officer (Geschäftsführer)	AM	Accountable Manager	
CUST	Customer (Kunde)	CUST	Customer (Kunde)	
DE	Design Engineer / Development Engineer (Entwicklungsingenieur)	DE	Design Engineer / Development Engineer (Entwicklungsingenieur)	
HD	Head of Development (Entwicklungsleiter)	HD	Head of Design (Entwicklungsleiter)	
PJM	Project Manager (Projektleiter)	HoA	Head of Office of Airworthiness (Leiter Musterprüfleitstelle)	
PM	Production Manager (Fertigungsleiter)	HoD	Head of Design Organisation	
QA	Quality Assurance (Qualitätssicherung)	PJM	Project Manager (Projektleiter)	
QM	Quality Manager (Qualitätsmanagement-beauftragter)	PM	Production Manager (Fertigungsleiter)	
		CVE	Compliance Verification Engineer (Musterprüfingenieur)	
		QA	Quality Assurance (Qualitätssicherung)	
		QM	Quality Manager (Qualitätsmanagementbeauftragter)	

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: Reference: DOC151228001 IEP-I000288

TABLE OF CONTENTS

ТА	BLE (DF FIGURES	4
RE	LATE	D DOCUMENTS	5
1	INTR	ODUCTION	6
2	SYS	TEM SPECIFIC SETTINGS	7
3	TECH	INICAL SPECIFICATION	7
4	ELEC	CTRICAL INTERFACE AND DATA INTERFACE	7
5	СОМ	MUNICATION INTERFACE AND COMMANDS	7
6	INST	ALLATION (HARDWARE AND COMMUNICATION)	8
	6.1	Hardware Installation	8
	6.2	Communication Installation	8
	6.3	Antenna Lever Arm Setup	9
	6.4	Magnetometer Misalignment Setup	11
	6.5	Odometer Integration Setup	11
	6.6	Relative orientation of IMU and vehicle	11
	6.7	Alignment	13
	6.8	Startup Mode	13
	6.9	Special Navigation Modes	13
	6.10	iXCOM Messages (Excerpt)	14
		6.10.1 INSSOL	.14
		6.10.2 GNSSSOL	.14
		6.10.4 SYS_STAT	14
7	QUIC	K START	15
8	BUIL	D-IN-TEST	16
	8.1	BIT Function Description	16
	8.2	Power-up BIT (PBIT)	16
	8.3	Continuous BIT (CBIT)	16
	8.4	LED Status Indicators	16
9	HAR	DWARE ARCHITECTURE	16
10	SPE	CIAL FEATURES	16
	10.1	REC Parameter / Post Processing	16
11	GRO	UND SUPPORT EQUIPMENT	16
12	PAC	KAGING & STORAGE	17
13	ROH	S & REACH	17
14	HAR	DWARE & SOFTWARE DESIGN STANDARDS	17

MAN_USERMANUAL_INAT-SYSTEMS.DOCX		Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM

Document No.: Reference: DOC151228001 IEP-I000288

15	SUPPORT	18
	15.1 Asking for Support	18
	15.2 Contact	18
16	ABBREVIATIONS	19
17	APPENDIX: IXCOM-CMD CDU SOFTWARE	20
18	APPENDIX: USB DRIVER INSTALLATION ON HOST PC	21
19	APPENDIX: FTP ACCESS TO THE INS	24

TABLE OF FIGURES

Figure 1:	System of iNAT-Rx/-Fx/-Hx Family	6
Figure 2:	System of iNAT-M200 Family	6
Figure 3:	Navigation Frame (red) and body frame (blue)	12
Figure 4:	Side slip angle (beta) and angle of attack (alpha)	13
Figure 5:	Example of iMAR type plate	
Figure 6:	iXCOM-CMD Software Main Screen	20
Figure 7:	Win-SCP Connection Parameters	24

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: Reference:

How to use this manual:

- Read this manual carefully before using the iNAT system.
- Recommendations for a proper operation are marked with this sign:
- Warnings and Dangers are marked with this sign:

See chapter 15 for any support by iMAR application engineers.

RELATED DOCUMENTS

This manual references to the following documents regarding the hardware and software of the iNAT-systems:

	Title	DocNo.	Comments
[1]	ICD_iNAT-RxFxHx_IEP-I000288	DOC141203029	Hardware ICD of iNAT-Rx/Fx family (drawings, connector pinout, GND concept)
[2]	ICD_iXCOM Protocol Specification	DOC141126064	Communication description of iNAT systems and list of all commands / data
[3]	ICD_ARINC825_iNAT	DOC141106133	ARINC825 CAN Implementation
[4]	iNAT-Rx/-Fx/-Hx/-M200 data sheets	several	Technical product specifications
[5]	Application Note iNAT Firmware Update	DOC141016031	How to install a new firmware on an iNAT hardware with 335xl kernel
[6]	MAN_iXCOM-CMD	DOC151112010	Manual of iXCOM-CMD GUI Software
[7]	MAN_UserManual_iNAT-RxFxHx_IEP- I000288	DOC151228001	User Manual for iNAT-Fx/-Rx/-Hx systems
[8]	CFG_Factory-Config-Table_iNAT- RxFxHx_IEP-I000288	LYT150803134	Template for factory settings for iNAT systems
[9]	ICD_iNAT-M200_IEP-I000245	DOC140301006	Hardware ICD of iNAT-M200 family (drawings, connector pinout, GND concept)
[10]	MAN_Introduction-into-Inertial-Measuring- Technology	DOC151228003	General description of coordinate systems etc.

Table 1: Related Documents

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 6 von 24

Document No.: Reference: DOC151228001 IEP-I000288

1 INTRODUCTION

This document shows how to operate the navigation systems of the iNAT system family, i.e. family iNAT-Rx/-Fx/-Hx (i.e. iNAT-RQT, iNAT-RQH, iNAT-FSSG), iNAT-M200, iNAT-M200-FLAT, iNAT-CFM as well as the military versions iSULONA, iCOMBANA and iPRENA.

The iNAT family is a class of inertial measurement systems with integrated high performance GNSS engine, which is made for a wide range of operation in navigation, timing, surveying, guidance and

control. Depending on the applied firmware, the systems can be used as full INS / IMS solution (standard usage) or as an specific IMU with an interface for time synchronized calibrated raw data of inertial sensors, GNSS data and time stamp acquired aiding data (e.g. for very customer specific tasks):

a. Navigation & Control

Systems for **Na**vigation and **T**iming (**iNAT**), Guidance and Control, Surveying or Attitude Heading Reference System (AHRS) with advanced and qualified sensor and processing hardware for - but not limited to - land, sea, subsea and airborne applications.

Advanced strapdown navigation algorithms as well as the sophisticated 27+ states extended Kalman filter based INS/GNSS/ODO data fusion are processed on the powerfull integrated processor with

fusion are processed on the po- Figure 1: System of iNAT-Rx/-Fx/-Hx Family

ARM architecture. Additionally the data fusion can process further external information like air data, magnetometer data or Doppler velocity aiding etc. (depending on application and sensor technology).

b. Extended Inertial Measurement Unit

Usage of the system explained under item a) above only as Extended Inertial Measurement Unit (EIMU), providing calibrated inertial data (angular rates / accelerations, timestamp, BIT), GNSS raw data (single or dual antenna; GPS, GLONASS, GALILEO, Beidou, TerraStar corrections) or GNSS processed data (position, velocity, standard deviations etc.), odometer / airdata / magnetometer / Doppler log data (all time-stamped according to IMU data (e.g. for dead reckoning solutions). In this case (operation only as EIMU) the system does not contain the Kalman filter based data fusion.

All mentioned time stamped calibrated raw data are also always available for the user if the system is operated as "Navigation & Control" unit according to item a).

Figure 2: System of iNAT-M200 Family

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 7 von 24

Document No.: Reference:

2 SYSTEM SPECIFIC SETTINGS

DOC151228001

IEP-1000288

Each delivered system can have factory specific features, depending on the purchase order and SOW. They are summarized in document [8] (see Table 1), which is provided for each delivered system individually. It contains the system type, the part number, the serial number and the configuration of the communication interfaces (UART, CAN, Ethernet, SYNC, USB, HDLC, ARINC429 etc.) at the time of delivery.

It is mandatory to have this configuration sheet on hand before you contact the iMAR support engineers for any reason.

3 TECHNICAL SPECIFICATION

The technical specification of performance of the iNAT systems is described in separate documents [4].

4 ELECTRICAL INTERFACE AND DATA INTERFACE

The hardware interface (mechanics, connectors and pinout, electrical signals, power supply, GND and earthing design etc.) is described in the system ICD.

The relation between the hardware interfaces on each connector and the software ports is also given in the system ICD.

5 COMMUNICATION INTERFACE AND COMMANDS

The communication interface (data structures, commands etc.) is described in a separate document [2] (see Table 1). There is also described how to build up a communication to the system via UART or Ethernet. A short excerpt about the internal logical channel structure can be also found in the iXCOM-CMD manual [6].

In [5] an application note is provided which describes how a firmware update can be installed on the controller of the iNAT system. Such update must not be applied without the agreement of an iMAR support engineer.

If the system is delivered including lab cables (these cables are called "lab cables" because they are not intended to be used in an aircraft or under harsh environmental conditions – if you need such cables, please contact iMAR for assistance if needed), this cable has a MIL connector at the one side and several TNC / SUB-D / RJ45 connectors at the other side, depending on application. The setup of the lab cable is described in the system ICD.

The pin out of the SUB-D15 female connector for the RS422 / UART ports is as follows:

Pin 2: RxD+ Pin 3: RxD-Pin 6: TxD+ Pin 7: TxD-Pin 9: GND

The pin out of the SUB-D9 male connector for the CAN lines is as follows:

Pin 2: CAN-LO Pin 3: GND Pin 7: CAN-HI

The pin out of the RJ45 LAN connector (socket) is as follows:

Pin 1: TX-P

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: DOC151228001 Reference: IEP-1000288

Pin 2: TX-N Pin 3: RX-P Pin 6: RX-N

The pin out of the SUB-D9 male connector for the ODOMETER lines is as follows (if any):

Pin	1:	ODO-B-LO
Pin	3:	ODO-B-HI
Pin	5:	GND
Pin	6:	ODO-A-HI
Pin	7:	ODO-A-LO

The proper interface termination (120 OHM at UART RS422 and CAN) must be considered when building up the communication. Hints are given in [1].

6 INSTALLATION (HARDWARE AND COMMUNICATION)

6.1 Hardware Installation

In general, the INS can be installed inside the application / vehicle / aircraft / ship in any arbitrary orientation. The lever arm to the GNSS antenna as well as the lever arm to the wheel sensor / odometer (if any) shall be as short as possible and has to be coordinated in the INS enclosure coordinate system. Details are described in [10] and [2] (see Table 1).

The installation shall be made at a location with reasonable low impact of vibration, shock and temperature gradients as the iNAT is a high precision measurement instrument.

Any shock impact due to installation handling must be avoided. A small bump between tw metal surfaces may induce a shock of several hundreds or even thousands of g. Falling down only a few millimeters on a metal surface may induce a several thousands g shock (even if the duration is quite short) and degrade or damage the system.

6.2 Communication Installation

In the following chapters some basics are described, the detailed description and additional parameters are given in [2].

In [2] the chapter "How to install an iXCOM communication channel" gives a good introduction how to establish a communication to the iNAT system, to configure it and to read measurement data and status information. The usage of the XCOM command and the LOG command are explained in detail as well as the meaning of commands, messages, responses and parameters regarding to the iXCOM protocol definition.

In chapter 7 a Quick Start information is provided as an example how to build up a communication following the required actions step by step.

In chapter 18 (appendix) instructions are given on how to connect from a local computer to the iNAT INS (Appendix: USB Driver INSTALLATION ON HOST PC).

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 9 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.:	DOC151228001	
Reference:	IEP-1000288	

6.3 Lever Arms and Misalignment Angles

The center point of the inertial sensors, especially the intersection point of the three accelerometers, is located somewhere inside of the inertial measurement system (IMS). This point is given in the mechanical drawings of the system (note: carefully distinguish between the sensor intersection point and the center of gravity of the measurement system).

The position of the GNSS antenna, of the odometer or the virtual measurement point (VMP) has to be given in respect to this sensor intersection point to the internal strapdown algorithms to perform best lever arm compensation.

Typically, the lever arm to these devices (GNSS antenna, odometer) or to the virtual measurement point is surveyed with a theodolite or with a laser tracker inside of the application once the IMS is installed. An alternative method will be to acquire the lever arm coordinates from the mechanical drawings of the setup.

The following drawings show the sensor intersection point.

Figure 3: Sensor Intersection Point (Accelerometers) inside the Drawing

The red circle shows the relevant through hole fitting (note: the drawing is given by bottom view here!), the blue circle shows the sensor intersection point, which is relevant for the internal algorithmic compensation.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 10 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.:	DOC151228001	
Reference:	IEP-1000288	

To make the acquisition of the lever arm measures more easy for the operator / surveyor, in all iNAT systems (i.e. using the iXCOM protocol or/and iXCOM-CMD software) the reference point for surveying any lever arm is the circular fitting / mounting through hole at the bottom plate of the IMS, and there specifically the mid of this hole¹. The embedded software inside the IMS automatically performs the right transformation into the sensor's intersection point (for each enclosure the mechanical relations between the circular fitting hole and the sensor intersection point are stored inside the factory setup).

The following picture shows this in detail (top view).

Figure 4: Lever Arm Definition

In the above example it can bee seen, that the lever arm has to be entered by the user, is measured from the red circled fitting hole to the blue marked star (location of GNSS antenna, odometer etc.). It is measured in body frame axes.

Lever-arm_x	=	- 364 mm
lever.arm_y	=	+ 232 mm
lever-arm_z	=	- 312 mm

Take care, whether the body z axis is directed down or up (both is possible, depending on system calibration and application).

If you use RTK based GNSS aiding data (i.e. centimeter level accuracy) during the operation, it is of course mandatory to determine the GNSS lever arm with an accuracy which is at least not worse than the GNSS accuracy (i.e. in the millimeter area).

The misalignment angles (e.g. if the IMS is installed being rotated by 90 deg around the body z xis) are always given by Eulerian angles around the body axes. To determine the rotation angles, install the IMS in the desired orientation and then rotate it (virtually) first around the body z axis, then around the rotated body y axis and finally around the again rotated x axis and insert the three rotation angles.

¹ Note: there are several fittings available. Make sure that you use the <u>through hole circular</u> fitting.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: Reference:

6.4.1 GNSS Antenna Lever Arm

DOC151228001

IEP-1000288

To achieve best results in position and orientation determination, the system shall know the lever arm between the INS and the GNSS antenna (or both GNSS antennas in case of a dual-antenna solution) as accurate as possible, but at least double as accurate as the expected GNSS standard deviation. For example standard GNSS accuracy is 1...2 m, therefore the lever arm shall be surveyed at least within 0.5 m accuracy. If the INS/GNSS system is used in RTK mode (2 cm position accuracy), the lever arm shall be surveyed with an accuracy of < 1 cm.

The GNSS lever arm can be defined using the parameter **PARGNSS_ANTOFFSET**.

It is recommended that the user mounts the INS as close as possible to the primary GNSS antenna, particularly in the horizontal plane. The uncertainty of the lever arm has to be provided together with the lever arm itself and should overbound the expected error.

The x, y and z values of the parameter represent the vector from the INS' center of navigation to the antenna phase center, measured in the INS enclosure frame.

In some applications the applied Kalman filter, which is used for INS/GNSS data fusion, supports an online antenna lever arm estimation.

6.4.2 Magnetometer Misalignment Setup

If the INS is aided by a magnetometer (not supported by all versions), the relative orientation of the magnetometer to the INS has to be entered. If the magnetometer axes do not coincide with the INS enclosure axes, the parameter **PARMAG_MISALIGN** shall be used to rotate the magnetometer output data in a way that it fits to the INS coordinate frame.

6.4.3 Odometer Integration Setup

Beside of navigation aiding the odometer can be used for zero velocity detection to perform ZUPTs (zero velocity updates). The lever arm from the INS to the odometer is to be set with the parameter **PARODO_LEVERARM.** It shall be accurate within the centimeter range.

If the INS is aided by an odometer / wheel sensor (not supported by all versions), an initial value of the scale factor of the odometer must be set. The parameter for this action is *PARODO_SCF*. It shall be at least accurate within +/-10 % for correct initialization of the internal Kalman filter, if GNSS aiding is at least initially available. The Kalman filter improves the accuracy of the scale factor over time as long as a reasonable GNSS aiding is available.

If a mission is executed without any GNSS aiding, the user has to set the scale factor as good as possible because finally the accuracy of the scale factor of the odometer limits the overall navigation performance (so-called dead-reckoning mode).

The odometer should not be mounted on a driven or braked wheel to avoid non-linear slippage effects, which increase the uncertainty of the navigation solution.

The internal Kalman filter estimates the odometer boresight angles, if aiding with holonomic constraints is selected via *PARODO_CONSTRAINT*.

6.4.4 Relative orientation of IMU and vehicle (mounting misalignment)

In order to indicate the roll, pitch and yaw angles as expected (pitch angle positive for nose up, roll positive for right wing down, yaw 0° pointing to north and 90° pointing to the east), the INS has to be mounted with its x-axis forward, y-axis to the right and z-axis down.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.:	1.08	
Date:	14.04.2016	
Page:	12 von 24	
Document No.:		

User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM

Document No.: DOC151228001 Reference: IEP-I000288

Figure 5: Navigation Frame (red) and body frame (blue)

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 13 von 24 Document No.:

User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM

Document No.: DO Reference: IEP

DOC151228001 IEP-I000288

Figure 6: Side slip angle (beta) and angle of attack (alpha)

Since it is not always possible to align the INS axes exactly to the vehicle main axes, the vehicle to body rotation may be entered using three rotation angles (Eulerian angles; $rot_x / rot_y / rot_z$). The related parameter is **PARIMU_MISALIGN**. The definition of the rotation (including the correct sequence) is given in [2]. All information in output logs formerly expressed in body coordinates is subsequently expressed in vehicle coordinates (i.e. for example INSVELBODY, INSRPY, INSDCM or INSQUAT as well as the corresponding components of INSSOL)Internally the INS is navigating in ECEF (geodetic reference frame) to allow a seamless navigation also during flights over the north or south pole.

6.5 Alignment

The system supports several alignment modes to determine attitude and heading prior to a mission or during a mission (in-flight alignment). The alignment mode is defined using the parameter **PAREKF_ALIGNMODE.**

6.6 Startup Mode

After power down, the INS can power up with a defined initial data setup. In general we distinguish the following initialization capabilities for heading and position:

- Use heading from gyro compassing or dual-antenna GNSS setup
- Use stored heading
- Use forced heading
- Use position from GNSS measurements
- Use stored position
- Use forced position

The stored data are used from the information stored during last power down. If no stored information is found, the system uses pre-defined default values, which can also be set by parameter command.

6.7 Special Navigation Modes

Special navigation modes can be made available to handle certain issues in aiding sources availability.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: DOC151228001 Reference: IEP-I000288

If no further valid GNSS updates (or air data updates) are available longer than a defined duration, the system can automatically activate a pre-defined aiding mode:

- Use air data speed
- Use baro altitude
- Output frozen speed
- Output frozen height

If no further valid air data and no further valid GNSS updates are available longer than a defined duration, the system can automatically output pre-defined values:

- Output frozen height
- Output frozen speed

Details are described in [2].

6.8 iXCOM Messages (Excerpt)

This chapter gives a brief overview of the most relevant data logs being used to receive navigation output data from the INS. For details please see [2].

6.8.1 INSSOL

The INSSOL message includes the navigation data as a result of the internal data fusion (INS integrated solution). It also contains the system status and the alignment status. The INSSOL message is available with a rate up tothe rate of the inertial sensors.

6.8.2 GNSSSOL

The GNSSSOL message contains the GNSS receiver solution. The GNSS solution includes the WGS84 position, the undulation (ellipsoid/geoid height difference), the GNSS based NED velocity, the standard deviations, status and the number of tracked/used satellites. The maximum GNSSSOL message rate depends on the GNSS receiver hardware being integrated in the INS.

6.8.3 GNSSTIME

The GNSSTIME message contains the UTC time-stamp. This message is needed to convert the GPS time to UTC time.

6.8.4 SYS_STAT

The SYS_STAT message contains the more detailed system status. The content of this message is variable and can be configured via the iXCOM parameter <code>PARDAT_SYSSTAT</code>. It is recommended to enable this message with the event based trigger. This means that the <code>SYS_STAT</code> message will only be sent if the content has been changed.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 15 von 24

Document No.: Reference: DOC151228001 IEP-I000288

7 QUICK START

This section describes the first steps with the iNAT system for configuration and operation. Many other commands and logs are available and can be found in document [2] (see Table 1) for more sophisticated operation.

It s recommended (at least for new users) to use the iXCOM-CMD tool (Table 1: Related Documents, item [6]) for system configuration and operation. If you intend to program your own communication interface to the iNAT system, we recommend to use our software development kit (SDK) which is available for MS Windows and Linux.

The following steps provide an informative basis for the first usage of the system.

- 1. Mount the antenna and connect the antenna cable to the correct connector (see system ICD, typically TNC or SMA connector).
- 2. Connect the lab cables with the system connectors of the iNAT.
- 3. Connect the RS422 UART port (typically COM3 for iNAT-Rx/-Fx-Hx) with the host PC. Take care for RxD / TxD logic as well as for polarity (RxD+ of the iNAT shall lead to TxD+ of the destination etc.).
- 4. Plug in the power connector of the iNAT (10-35 V DC or 16-35 V DC, depending on version; confirm regarding type plate!).
- 5. Switch power on
- 6. Open your serial port on your host computer and send the iXCOM command XCOM with the OPEN parameter (command ID 0x0005) to the iNAT (create a channel number etc. as described in [2]). This command is mandatory required to enable a specific iXCOM communication channel.²
- 7. Configuration of the data messages (INSSOL, GNSSSOL, GNSSTIME and SYS_STAT) with the desired rates (inside of the given constraints of baud rate).
- 8. Configuration of the INS misalignment via the iXCOM parameter PARIMU_MISALIGN.
- 9. Configuration of the GNSS antenna lever-arm via the iXCOM parameter PARGNSS_ANTOFFSET.
- **10.** Configuration of the alignment time via the iXCOM parameters <code>PAREKF_ALIGNTIME</code> and <code>PAREKF_COARSETIME</code>.
- 11. Configuration of the alignment mode via the iXCOM parameter PAREKF_ALIGNMODE.
- 12. Configuration of the Kalman filter start-up behaviour via the iXCOM parameter PAREKF_STARTUP.
- 13. Saving the configuration into the internal non-volatile memory via the iXCOM command CONF (command ID 0x0003).
- 14. Start a re-alignment via the iXCOM command EKF (command ID 0x0004).
- 15. After the mission is completed, the iXCOM communication channel shall be closed via the iXCOM command XCOM with the CLOSE parameter.

² Per default by factory set the "channel number" 0 (zero) is existing with a pre-defined log list (output of certain data logs). It is best practise to clear all logs at the beginning by the application and to command the logs being required by the specific application.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: D Reference: IE

DOC151228001 IEP-I000288

8 BUILD-IN-TEST

8.1 BIT Function Description

The INS contains the resources to perform a Built-In-Test (BIT) function. The BIT is designed to inform the user whether the outputs are valid, whether the internal hardware is operating correctly (internal voltages, temperatures and test signals) and whether the inertial sensors are providing correct data (within the range of testability).

8.2 Power-up BIT (PBIT)

During power-up, the INS auto-executes the PBIT function. Power-up to normal operation, including the PBIT, will take less than 15 seconds. Shorter durations TBD. The PBIT comprises sensor and electronics health and temperature monitoring.

8.3 Continuous BIT (CBIT)

During normal operation a CBIT is running as a permanent background process to monitor the health of the INS. The CBIT comprises sensor and electronics health and temperature monitoring.

8.4 LED Status Indicators

One or two LEDs signalize the status of the system. The description can be found in the system ICD.

9 HARDWARE ARCHITECTURE

The hardware architecture of the INS is given in the dedicated system ICD.

10 SPECIAL FEATURES

The system supports a lot of useful additional features. Not all of these features are available in every system configuration and not on each hardware type. In the following a few of these features are listed.

10.1 REC Parameter / Post Processing

The recording module (REC) records the sensor data and the INS/GNSS solution to the internal storage device. The REC module can be configured to record specific modules at a specific data rate. The secondary sensors with a low data rate such as GNSS, MAG or MADC will be recorded with their respective processing rate. This ensures that all aiding data are available for post-processing. The configurable recording rate refers to the IMU and the data fusion modules.

The REC feature can be configured by the iXCOM-CMD software or via dedicated commands sent by the user.

11 GROUND SUPPORT EQUIPMENT

The INS provides several data interfaces (Ethernet, RS422 UART) which can be used for operational as well as for diagnostics purposes. As GSE (ground support equipment) a standard PC can be used if it supports Ethernet (100 Mbit/s) and/or RS422 UART (baud rate adjustable up to 921.6 kBd). For standard notebooks commercial adapters (USB to RS422 UART or Ethernet to RS422 UART, e.g. from MOXA) are available on the market.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 17 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.:	DOC151228001	
Reference:	IEP-1000288	

For the UART interface in general a standard terminal program is sufficient. For Ethernet, UART and USB interfacees iMAR provides a support and command software iXCOM-CMD. An iMAR internal FAT and BIT analyzing support software is available for customers, having a larger number of iNAT systems under operation (please contact iMAR support engineers for detailed information and conditions).

For operation in the lab a standard power supply is required (28 V DC / 1.5 A or 8...36 V DC, 50 W). Furthermore one or two L1L2 GPS + GLONASS + L-Band antennas (depending on standard setup or dual-antenna setup) is required as well as a set of system lab cables.

12 PACKAGING & STORAGE

The INS is a highly accurate measurement tool, which requires a careful handling. Nevertheless of the ruggedized and the shock resistant design, mounting and transportation shocks shall be avoided where possible.

Also high ESD impacts shall be avoided as usual.

Therefore a proper packaging is mandatory before transportation or storage. This can be achieved by a double hull packaging within ESD protected foam.

The transportation and storage shall be executed within the specified environmental conditions (see datasheet).

As valid for every technical device, avoiding strong temperature gradients during operation or storage may increase the lifetime of the goods.

13 ROHS & REACH

In standard configuration the INS electronics does not contain environmental or health hazardous materials.

If the system is manufactured with Nickel plated connectors (standard configuration), they do not contain environmental or health hazardous materials.

The inertial sensor assembly (integrated optics, ring laser setup) may contain certain listed materials in small volume (< 0.1 % by weight). This is required for a reliable operation and cannot be substituted.

14 HARDWARE & SOFTWARE DESIGN STANDARDS

Hardware and software of the iNAT-Rx/-Fx/-Hx as well as iNAT-M200 and iNAT-CFM (and accordingly the versions iSULONA, iCOMBANA and iPRENA for military applications) are developed under full configuration control according to iMAR standards. The equipment is designed to be used for advanced navigation, surveying and control applications. Certain equipment (see dedicated ICD of the product) is certified regarding environmental conditions and regarding EMI/EMC protection to be used in military and commercial aircraft (MIL-STD-810F/G, MIL-STD-461E, MIL-STD-704D, DO160E). The design standards of DO254 and DO178C are not applicable for the current releases.

For navigation applications in military aircraft the usage of an independent navigation backup system (ESI) is recommended.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Document No.: Reference:

DOC151228001 IEP-I000288

15 SUPPORT

15.1 Asking for Support

For our support management system, we need to know the project number (Proj.No.) or alternatively P/N and S/N of the system you are speaking about.

These numbers are for example provided on the type plate (example shown in the Fig. on the right side).

www.imar-n	avigation.de				
Nato CageCode	B: DN401				
Туре:	IMADC				
Proj.No.:	SYS-1000507.001.3				
P/N; S/N:	00130-00001-0001; 00001				
Customer P/N	: 148L0630-01				
Power:	9-36V / <2.5W				
Manuf. Date:	04.2013 - ABCDE				

Figure 7: Example of iMAR type plate

15.2 Contact

You can find general information about our products, used technologies, and about inertial navigation, and GNSS based navigation at <u>www.imar-navigation.de</u>.

You can reach iMAR Customer Support as follows:

- support@imar-navigation.de
- ***** +49-6894-9657-0
- iMAR Navigation GmbH Customer Support Im Reihersbruch 3 D-66386 St. Ingbert Germany

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Reference:

User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM

DOC151228001 IEP-I000288

16 ABBREVIATIONS

Expression	Description
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
FTP	File Transfer Protocol
IMU	Inertial Measurement Unit
INS	Inertial Navigation System
NAT	Navigation And Timing
OS	Operating System
PPS	Pulse Per Second
RNDIS	Remote Network Driver Interface Specification
USB	Universal Serial Bus

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 20 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.:	DOC151228001	
Reference:	IEP-1000288	

17 APPENDIX: iXCOM-CMD CDU SOFTWARE

A software is available, which allows a quick access to the major data of the INS and to perform certain parameter settings.

The iXCOM CDU software can be operated on a standard PC, on a tablet or on specific handheld devices like $GETAC^{TM}$ terminals.

EXCOM-CMD												
sctions Window Help												
ø • ø ø @ @ ()	0											
onnection	ð×	System Info	GNSS Solution	INS/GNSS Solution	Interface Sen	sors Aignment	Aiding Visa	alization Sta	atus About		Response	1
Channel 0	\$	About								ê x	Initializing Profile Base-Directory: C:/t Work Directory: C:/t	Jsers/christianwe/AppData/Roamin Jsers/christianwe/AppData/Roamin
Ethemet (TCP/IP) UART (RS-232)											Global Configuration: C:/U Switched to profile 'user'.	Isers/christianwe/AppData/Roamin
Port COM1	•										Style 'WindowsVista' loaded. Initialized	
Baud Rate 9600	•				wigation, C	puidance						
Data Bits 8	Ψ.				0140 Z	002						
Stop Bits 1	*				E I	nike						
Parity No Parity	*			10	4							
Flow Control No Flow Control	*			tion		A						
USB Refresh Port	List				× 6	e y						
offe	# x				° 10	AR 🕺						
ursent Profile Juner	a Delete				www.mai-r	avigation de						
May DecRe	Desete											
Style WindowsVista	Create			Systems	for Inertial Measur Im Reihe	ng, Automation an sbruch 3	1 Control					
Style withowsvista					D-66386 5	t. Ingbert						
ata Recording	8×				Tel.: +49 (0)	5894 - 9657-0 ac pavination de						
				1	Web: http://www.	mar-navigation.de						
					IXCOM	I-CMD						
					v1.	1.0						
					Build Dec	10 2015						
					P/N 00028-	00016-0000						
				This so	his software is using i ftware is using QcGau	cons from <u>fat.cow.com</u> geWidget from <u>gt-app</u>	s.org					
Directory AppData/Roaming/MAR Gmb	H/XCOM-CMD/			This softw	are is using QFlightIns	truments from source	orge.net					
ie Prefix												
Format	•										e (
0	0	0	0	0	0	0	0	0	1	2	0	0

Figure 8: iXCOM-CMD Software Main Screen

Please refer to the document MAN_iXCOM-CMD.pdf (DOC151112010) for a detailed description of the software. Also a training course document is available to support a quick start for new users.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 21 von 24

Document No.: Reference:

DOC151228001 IEP-I000288

18 APPENDIX: USB DRIVER INSTALLATION ON HOST PC

To configure the system via a host PC, the user can connect to the INS direct via Ethernet, via RS422 (UART) or via USB. By logic the USB port is mapped in the PC like an Ethernet network port.

The USB peripheral will enumerate to the host as an Ethernet device, using the "usbnet" driver with Linux hosts or Microsoft's RNDIS driver with Windows hosts. The user has to set it up like any other two-host Ethernet link.

RNDIS driver is a part of the Windows 7 operating system, but the OS fails to detect it automatically. The following steps will help the user to install the RNDIS driver.

1. After the device is connected to the PC, the Windows OS will automatically search for the RNDIS driver. After it fails to find the driver, the following message will be shown.

Device driver software was	not successfully installed
RNDIS Kitl	XNo driver found
What can I do if my device did not in	istall properly?

2. Right click on Computer and select Manage. From System Tools, select Device Manager. It will show a list of devices currently connected with the development PC. In the list, RNDIS can be seen with an exclamation mark implying that driver has not been installed.

3. Right click on it and select Update Driver Software... When prompted to choose how to search for device driver software, choose Browse my computer for driver software.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 22 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.: Reference:	DOC151228001 IEP-1000288	

- 4. Browse for driver software on your computer will come up. Select Let me pick from a list of device drivers on my computer.
- 5. A window will come up asking to select the device type. Select Network adapters, as RNDIS emulates a network connection.

- A Longette		×
🕒 🚊 Update Driver Software - RNDIS Kitl		
Select your device's type from the list below		
Select your device's type norm the list below.		
Common hardware types:		
Microsoft Common Controller For Windows Class	~	
Mobile devices		
Modems		
Sector Monitors		
Multifunction adapters		
TMulti-port serial adapters		
Setwork adapters	11	
network Client	<u> </u>	
Network Protocol		
📇 Network Service		
Non-Plug and Play Drivers		
PCMCIA adapters	-	
	Next Car	ncel

6. In the Select Network Adapter window, select Microsoft Corporation from the Manufacturer list. Under the list of Network Adapter, select Remote NDIS compatible device.

elect Network Adapt	er	
Click the Network	Adapter t	hat matches your hardware, then click OK. If you have an ure, click Have Dick.
	i tins leat	IL CIER HOTE DISK.
Manufacturer	*	Network Adapter:
Marvell		Remote NDIS based Internet Sharing Device
Microsoft		Remote NDIS Compatible Device
Microsoft Corporation	-	
	•	
■ This driver is digitally si	aned	Have Disk
a mis unver is urgitally si	gricu.	THE DISKI

7. The RNDIS device is now installed and ready for use.

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 23 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.: Reference:	DOC151228001 IEP-I000288	

After the driver is installed successfully, a further network adapter is available. It is required to use a static IP address for this network. The iNAT's IP address is **192.168.5.147**. Therefore, the new network adapter has to be in the same sub-network (e.g. 192.168.5.2).

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH

Rev.: 1.08 Date: 14.04.2016 Page: 24 von 24	User Manual for System Families iNAT-Rx/-Fx/-Hx, iNAT-M200 and iNAT-CFM	
Document No.: Reference:	DOC151228001 IEP-1000288	

19 APPENDIX: FTP ACCESS TO THE INS

The iNAT provides a user interface via FTP. We strongly recommend using a FTP-Client such as Win-SCP³ or FileZilla⁴. The following example uses Win-SCP as FTP-Client.

WinSCP Anmeldung	
Veues Verbindungsziel	Sitzung Übertragungsprotokoll: Verschlüsselung: FTP ▼ Keine Verschlüsselung ▼ Rechnername: Portnummer: 192. 168.5. 147 21 ☑ Benutzername: Kennwort: agonym anmelden Speichern ▼ Abbrechen Erweitert ▼
<u>W</u> erkzeuge ▼ <u>V</u> erwalten ▼	Anmelden 💌 Schließen Hilfe

Figure 9: Win-SCP Connection Parameters

The connection parameters are:

- IP-Addresse: 192.168.5.147 •
- Port: 21
- Username: not required •
- Password: nor required •

Note: For systems being delivered until May 2016 a download of measurement data from the INS shall be performed via USB. If FTP is used, please use a switch of type NetGear FS108 (and not of type "ProSafe" like NetGear GS108).

The iXCOM-CMD software supports file transfer with an integrated FTP client.

 ³ Download: <u>http://winscp.net/eng/download.php</u>
⁴ Download: <u>https://filezilla-project.org/download.php?type=client</u>

MAN_USERMANUAL_INAT-SYSTEMS.DOCX	History-ID:	Document Status: Approved (Final Status)
Template No.: LYT150803134 • Tmpl-Rev.: 1.05 • Tmpl-Date: 02.11.2015	2603	Copyright © iMAR Navigation GmbH